Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = x2 + 2x + 2, g(x) = - x2 + 2x - 1 and a, b be the extreme values of f(x), g(x) respectively. If c is the extreme value of (f/g) (x) (for x ≠ 1), then a + 2b + 5c + 4 =
Q. Let
f
(
x
)
=
x
2
+
2
x
+
2
,
g
(
x
)
=
−
x
2
+
2
x
−
1
and
a
,
b
be the extreme values of
f
(
x
)
,
g
(
x
)
respectively. If
c
is the extreme value of
g
f
(
x
)
(for x
=
1), then
a
+
2
b
+
5
c
+
4
=
4253
219
AP EAMCET
AP EAMCET 2019
Report Error
A
2
B
1
C
4
D
3
Solution:
Given,
f
(
x
)
=
x
2
+
2
x
+
2
=
x
2
+
2
x
+
1
+
1
=
(
x
+
1
)
2
+
1
Here,
f
(
x
)
∈
[
1
,
∞
)
and
g
(
x
)
=
−
x
2
+
2
x
−
1
=
−
(
x
2
−
2
x
+
1
)
=
−
(
x
−
1
)
2
Here,
g
(
x
)
∈
(
−
∞
,
0
]
Now,
g
f
(
x
)
=
−
x
2
+
2
x
−
1
x
2
+
2
x
+
2
=
y
⇒
x
2
+
2
x
+
2
=
−
y
x
2
+
2
x
y
−
y
⇒
x
2
+
y
x
2
+
2
x
−
2
x
y
+
2
+
y
=
0
⇒
x
2
(
1
+
y
)
+
(
2
−
2
y
)
x
+
2
+
y
=
0
∵
D
≥
0
∴
(
2
−
2
y
)
2
−
4
(
2
+
y
)
(
1
+
y
)
≥
0
4
+
4
y
2
−
8
y
−
4
(
2
+
y
)
(
1
+
y
)
>
0
⇒
y
≤
−
5
1
So,
g
f
(
x
)
∈
(
−
∞
,
−
5
1
]
So,
a
=
1
,
b
=
0
and
c
=
−
5
1
Hence,
a
+
2
b
+
5
c
+
4
=
1
+
0
+
5
(
−
5
1
)
+
4
=
1
−
1
+
4
=
4