Q.
Let f(x)=(x−415)2+2−16x2+(x−6)2+(2−16x2−9)2 where −42≤x≤42
If the least value of f(x) is qp17, where p,q are relatively prime numbers, then find the value of (p−q)
f(x)=(x−415)2+2−16x2+(x−62)+(2−16x2−9)2 P≡(x,2−16x2),A≡(415,0),B≡(6,9)
P lies on ellipse 16x2+1y2=2 PA+PB≥AB ∴ Minimum value of PA+PB=AB. AB=(6−415)2+(9−0)2=1681+81=4917 ∴p−q=5