Q. Let $f(x)=\sqrt{\left(x-\frac{15}{4}\right)^2+2-\frac{x^2}{16}}+\sqrt{(x-6)^2+\left(\sqrt{2-\frac{x^2}{16}}-9\right)^2}$ where $-4 \sqrt{2} \leq x \leq 4 \sqrt{2}$ If the least value of $f(x)$ is $\frac{p}{q} \sqrt{17}$, where $p, q$ are relatively prime numbers, then find the value of $(p-q)$
Conic Sections
Solution: