Q.
Let f(x)=(x+1)(x+2)(x+3)(x+4)+5 where x∈[−6,6]. If the range of the function is [a,b] where a,b∈N then find the value of (a+b).
1147
107
Relations and Functions - Part 2
Report Error
Answer: 5049
Solution:
f(x)=(x2+5x+4)(x2+5x+6)+5 =[(x2+5x+5)−1][(x2+5x+5)+1]+5 =(x2+5x+5)2−1+5 f(x)=(x2+5x+5)2+4
Hence f(x) has a minimum value 4 when x2+5x+5=0
i.e. x=2−5±5; Hence x=2−(5+5)∈[−6,6] also maximum occurs at x=6 f(x)∣max=(36+30+5)2+4=(71)2+4=5041+4=5045
range is [4,5045] ∴a=4;b=5045⇒a+b=5049
Alternatively: f(x)−5=g(x)]