Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=(x-1/x+1), x ∈ R- 0,-1,1). If fn+1(x)=f(fn(x)) for all n ∈ N, then f6(6)+f7(7) is equal to:
Q. Let
f
(
x
)
=
x
+
1
x
−
1
,
x
∈
R
−
{
0
,
−
1
,
1
)
. If
f
n
+
1
(
x
)
=
f
(
f
n
(
x
)
)
for all
n
∈
N
, then
f
6
(
6
)
+
f
7
(
7
)
is equal to:
2150
156
JEE Main
JEE Main 2022
Relations and Functions - Part 2
Report Error
A
6
7
8%
B
−
2
3
60%
C
12
7
24%
D
−
12
11
8%
Solution:
f
(
x
)
=
x
+
1
x
−
1
⇒
f
2
(
x
)
=
f
(
f
(
x
))
=
x
+
1
x
−
1
+
1
x
+
1
x
−
1
−
1
=
−
x
1
f
3
(
x
)
=
f
(
f
2
(
x
)
)
=
f
(
−
x
1
)
=
1
−
x
x
+
1
⇒
f
4
(
x
)
=
f
(
1
−
x
x
+
1
)
=
−
x
1
⇒
f
6
(
x
)
=
−
x
1
⇒
f
6
(
6
)
=
−
8
1
f
7
(
x
)
=
(
−
x
1
)
=
1
−
x
x
+
1
⇒
f
7
(
7
)
=
−
6
8
=
−
3
4
∴
−
6
1
+
−
3
4
=
−
2
3