Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=(x-1/4)+((x-1)3/12)+((x-1)5/20)+((x-1)7/28) ldots ldots ldots ∞ for x ∈(0,2), then f prime((3/2)) is equal to
Q. Let
f
(
x
)
=
4
x
−
1
+
12
(
x
−
1
)
3
+
20
(
x
−
1
)
5
+
28
(
x
−
1
)
7
………
∞
for
x
∈
(
0
,
2
)
, then
f
′
(
2
3
)
is equal to
73
100
Continuity and Differentiability
Report Error
A
2
1
B
4
1
C
5
1
D
3
1
Solution:
f
(
x
)
=
4
1
(
(
x
−
1
)
+
3
(
x
−
1
)
3
+
5
(
x
−
1
)
5
+
7
(
x
−
1
)
7
……
...
)
=
4
1
⋅
2
1
ln
(
1
−
(
x
−
1
)
1
+
(
x
−
1
)
)
=
8
1
ln
(
2
−
x
x
)
f
′
(
x
)
=
4
x
(
2
−
x
)
1
⇒
f
′
(
2
3
)
=
3
1