Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=|x 1 (-3/2) 2 2 1 (1/x-1) 0 (1/2)| The minimum value of f(x) (given x > 1 ), is
Q. Let
f
(
x
)
=
∣
∣
x
2
x
−
1
1
1
2
0
2
−
3
1
2
1
∣
∣
The minimum value of
f
(
x
)
(given
x
>
1
), is
600
166
Determinants
Report Error
Answer:
4
Solution:
y
=
∣
∣
x
2
x
−
1
1
1
2
0
2
−
3
1
2
1
∣
∣
=
x
(
1
−
0
)
−
(
1
−
x
−
1
1
)
−
2
3
(
0
−
x
−
1
2
)
=
x
−
1
+
x
−
1
1
+
x
−
1
3
=
(
x
−
1
)
+
(
x
−
1
)
4
By applying A.M.-G.M. inequality, we have
y
=
(
x
−
1
)
+
x
−
1
4
≥
2
(
x
−
1
)
x
−
1
4
=
4
(As
x
>
1
)