Given, f(x)=x+21=22x+1 ∴f(2x)=2x+21 ⇒f(2x)=24x+1
and f(4x)=4x+21 ⇒f(4x)=28x+1
Since, f(x),f(2x) and f(4x) are in HP. ∴f(x)1,f(2x)1 and f(4x)1 are in AP. ⇒f(2x)1=2f(x)1+f(4x)1 ⇒4x+12=22x+12+8x+12 ⇒4x+12=(2x+1)(8x+1)10x+2 ⇒(2x+1)(8x+1)=(5x+1)(4x+1) ⇒16x2+10x+1=20x2+9x+1 ⇒4x2−x=0 ⇒x(4x−1)=0 ⇒x=41[∵x=0]
Hence, one real value of x for which the three unequal terms are in HP.