Q.
Let f(x)=(x+1)2−1,x≥−1 then the set {x:f(x)=f−1(x)} is equal to
427
135
Relations and Functions - Part 2
Report Error
Solution:
Let y=(x+1)2−1,x≥−1 ⇒(x+1)2=y+1 ⇒x+1=y+1 as x≥−1 ⇒x=−1+y+1,y≥−1 Thus f−1(x)=−1+x+1 So f(x)=f−1(x) ⇒(x+1)2−1=−1+x+1 ⇒x+1=0 or (x+1)3/2=1 ⇒x=−1 or x=0