Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=( sin x/x), then ∫ limits0π / 2 f(x) f((π/2)-x) d x=
Q. Let
f
(
x
)
=
x
s
i
n
x
, then
0
∫
π
/2
f
(
x
)
f
(
2
π
−
x
)
d
x
=
358
155
Integrals
Report Error
A
π
2
0
∫
π
f
(
x
)
d
x
B
0
∫
π
f
(
x
)
d
x
C
π
0
∫
π
f
(
x
)
d
x
D
π
1
0
∫
π
f
(
x
)
d
x
Solution:
I
=
0
∫
π
/2
x
s
i
n
x
(
2
π
−
x
)
c
o
s
x
d
x
π
I
=
0
∫
π
/2
sin
2
x
[
x
1
+
π
/2
−
x
1
]
d
x
=
0
∫
π
/2
x
s
i
n
2
x
d
x
+
0
∫
π
/2
π
/2
−
x
s
i
n
2
x
d
x
=
0
∫
π
/2
x
s
i
n
2
x
d
x
+
0
∫
π
/2
x
s
i
n
2
x
d
x
=
4
0
∫
π
/2
2
x
s
i
n
2
x
d
x
2
π
I
=
0
∫
π
t
s
i
n
t
d
t
[Put
2
x
=
t
]
I
=
π
2
0
∫
π
x
s
i
n
x
d
x