Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= begincases sin x, text for x ≥ 0 1- cos x, text for x ≤ 0 endcases and g(x)=ex. Then the value of (gof)' (0) is
Q. Let
f
(
x
)
=
{
sin
x
,
1
−
cos
x
,
for
x
≥
0
for
x
≤
0
and
g
(
x
)
=
e
x
. Then the value of
(
g
o
f
)
′
(
0
)
is
1693
203
Continuity and Differentiability
Report Error
A
1
B
-1
C
0
D
None of these
Solution:
Given,
f
(
x
)
=
{
sin
x
,
1
−
cos
x
,
for
x
≥
0
for
x
≤
0
and
g
(
x
)
=
e
x
.
∴
gof
=
{
e
s
i
n
x
,
e
1
−
c
o
s
x
,
x
≥
0
x
≤
0
∴
L
HD
=
(
gof
)
′
(
0
−
h
)
=
h
→
0
lim
−
h
g
o
f
(
0
−
h
)
−
g
o
f
(
h
)
=
h
→
0
lim
−
h
e
1
−
c
o
s
(
0
−
h
)
−
e
1
−
c
o
s
h
=
0
RHD
=
(
gof
)
′
(
0
+
h
)
=
h
→
0
lim
h
g
o
f
(
0
+
h
)
−
g
o
f
(
h
)
=
h
→
0
lim
h
e
s
i
n
h
−
e
s
i
n
h
=
0
∴
R
HD
=
L
HD
=
0
⇒
(
gof
)
′
(
0
)
=
0