Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=| sin 2 x -2+ cos 2 x cos 2 x 2+ sin 2 x cos 2 x cos 2 x sin 2 x cos 2 x 1+ cos 2 x |, x ∈[0, π] Then the maximum value of f(x) is equal to
Q. Let
f
(
x
)
=
∣
∣
sin
2
x
2
+
sin
2
x
sin
2
x
−
2
+
cos
2
x
cos
2
x
cos
2
x
cos
2
x
cos
2
x
1
+
cos
2
x
∣
∣
,
x
∈
[
0
,
π
]
Then the maximum value of
f
(
x
)
is equal to
358
180
JEE Main
JEE Main 2021
Determinants
Report Error
Answer:
6
Solution:
∣
∣
−
2
2
sin
2
x
−
2
0
cos
2
x
0
−
1
1
+
cos
2
x
∣
∣
(
R
1
→
R
1
−
R
2
&
R
2
→
R
2
−
R
3
)
−
2
(
cos
2
x
)
+
2
(
2
+
2
cos
2
x
+
sin
2
x
)
4
+
4
cos
2
x
−
2
(
cos
2
x
−
sin
2
x
)
f
(
x
)
=
4
+
ma
x
=
1
2
cos
2
x
f
(
x
)
m
a
x
=
4
+
2
=
6