Given, f(x)=(sin−1x)2−(cos−1x)2 =(sin−1x+cos−1x)(sin−1x−cos−1x)=2π(sin−1x−(2π−sin−1x))) =(sin−1x+cos−1x)(sin−1x−cos−1x)=2π(sin−1x−(2π−sin−1x)) ∴f(x)=2π(2sin−1x−2π),∀x∈[−1,1] [As, f is increasing function]
So, fmax(x=1)=2π(2(2π)−2π)=4π2.
Also, fmin(x=−1)=2π(−2(2π)−2π)=4−3π2 ⇒ range of f(x)=[4−3π2,4π2]=[4aπ2,4bπ2] (Given) ∴a=−3 and b=1 Hence, (b−a)=1−(−3)=4