Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=(√sgn (α x2 + α x + 1)/cot- 1 (x2 - α )) . If f(x) is continuous for all x∈ R , then number of integers in the range of α is
Q. Let
f
(
x
)
=
co
t
−
1
(
x
2
−
α
)
s
g
n
(
α
x
2
+
αx
+
1
)
. If
f
(
x
)
is continuous for all
x
∈
R
, then number of integers in the range of
α
is
218
160
NTA Abhyas
NTA Abhyas 2022
Report Error
A
0
B
4
C
5
D
6
Solution:
∵
f
(
x
)
is continuous for all
x
∈
R
∴
α
x
2
+
αx
+
1
>
0∀
x
∈
R
(i) If
α
=
0
then it is true.
(ii) If
α
=
0
then
D
<
0
α
2
−
4
α
<
0
⇒
0
<
α
<
4
∴
Integral values of
α
=
0
,
1
,
2
,
3
∴
Number of integral values of
α
=
4