Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=| sec x cos x sec 2 x+ cot x operatornamecosec2 x cos 2 x cos 2 x operatornamecosec2 x 1 cos 2 x operatornamecosec2 x| then value of ∫ limitsπ / 4π / 2 f(x) d x is
Q. Let
f
(
x
)
=
∣
∣
sec
x
cos
2
x
1
cos
x
cos
2
x
cos
2
x
sec
2
x
+
cot
x
cosec
2
x
cosec
2
x
cosec
2
x
∣
∣
then value of
π
/4
∫
π
/2
f
(
x
)
d
x
is
37
143
Determinants
Report Error
A
0
B
π
/48
C
−
2
π
−
15
2
π
D
none of these
Solution:
Applying
R
2
→
R
2
−
R
3
, we get
f
(
x
)
=
∣
∣
sec
x
−
sin
2
x
1
cos
x
0
cos
2
x
sec
2
x
+
cot
x
cosec
2
x
0
cosec
2
x
∣
∣
=
−
(
−
sin
2
x
)
∣
∣
cos
x
cos
2
x
sec
2
x
+
cot
x
cosec
2
x
cosec
2
x
<
b
r
/
>
∣
∣
=
sin
2
x
[
cos
x
cosec
x
−
cos
2
x
(
sec
2
x
+
cot
x
cosec
2
x
)
]
=
cos
x
−
sin
2
x
−
s
i
n
x
c
o
s
3
x
=
cos
x
−
2
1
(
1
−
cos
2
x
)
−
(
s
i
n
x
1
−
sin
x
)
cos
x
Thus,
π
/4
∫
π
/2
f
(
x
)
d
x
=
π
/4
∫
π
/2
cos
x
d
x
−
2
1
π
/4
∫
π
/2
d
x
+
2
1
π
/4
∫
π
/2
cos
2
x
d
x
−
π
/4
∫
π
/2
(
s
i
n
x
1
−
sin
x
)
cos
x
d
x
=
1
−
2
1
−
2
1
(
2
π
−
4
π
)
+
4
1
(
0
−
1
)
−
(
lo
g
∣
t
∣
−
2
t
2
)
]
1/
2
1
=
1
−
2
1
−
8
π
−
2
1
lo
g
2
where
t
=
sin
x