Q.
Let f(x) satisfy the requirements of Lagrange's mean value theorem in [0,2]. If f(0)=0 and f′(x)≤21 for all x in [0,2], then
2274
230
Continuity and Differentiability
Report Error
Solution:
Applying Lagrange's mean value theorem to f(x)
in [0,x],0<x≤2, we get x−0f(x)−f(0)=f′(c) for some c∈(0,2) ⇒xf(x)≡f′(c)≤21 ⇒f(x)≤21x≤21.2(∵x≤2) ⇒f(x)≤1