Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)= max x+|x|, x-[x] where [x] denotes the greatest integer ≤ x. Then, the value of ∫ limits-33 f(x) d x is
Q. Let
f
(
x
)
=
max
{
x
+
∣
x
∣
,
x
−
[
x
]}
, where
[
x
]
denotes the greatest integer
≤
x
. Then, the value of
−
3
∫
3
f
(
x
)
d
x
is
4387
221
WBJEE
WBJEE 2014
Integrals
Report Error
A
0
B
51/2
C
21/2
D
1
Solution:
Given,
f
(
x
)
=
max
{
x
+
∣
x
∣
,
x
−
[
x
]}
=
{
2
x
,
x
−
[
x
]
,
x
≥
0
x
≤
0
∴
−
3
∫
3
f
(
x
)
d
x
=
−
3
∫
0
x
−
[
x
]
d
x
+
0
∫
3
2
x
d
x
=
3
−
1
∫
0
(
1
+
x
)
d
x
+
2
0
∫
3
x
d
x
[
∵
x
−
[
x
]
is a periodic function at
x
=
1
]
=
3
[
x
+
2
x
2
]
−
1
0
+
2
[
2
x
2
]
0
3
=
3
[
0
−
0
−
(
−
1
+
2
1
)
]
+
3
2
−
0
=
3
[
2
1
]
+
9
=
2
3
+
9
=
2
21