Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) = loge( sin x), (0 < x < π) and g(x) = sin-1(e-x), (x ge 0). If α is a positive real number such that a = (fog)'(α) and b = (fog)(α), then :
Q. Let
f
(
x
)
=
lo
g
e
(
sin
x
)
,
(
0
<
x
<
π
)
and
g
(
x
)
=
sin
−
1
(
e
−
x
)
,
(
x
≥
0
)
. If
α
is a positive real number such that
a
=
(
f
o
g
)
′
(
α
)
and
b
=
(
f
o
g
)
(
α
)
, then :
2828
210
JEE Main
JEE Main 2019
Continuity and Differentiability
Report Error
A
a
α
2
−
b
α
−
a
=
0
7%
B
a
α
2
−
b
α
−
a
=
−
2
α
2
13%
C
a
α
2
+
b
α
+
a
=
0
7%
D
a
α
2
−
b
α
−
a
=
1
73%
Solution:
f
o
g
(
x
)
=
(
−
x
)
⇒
(
f
g
(
α
))
=
−
a
=
b
(
f
g
(
x
)
)
′
=
−
1
⇒
(
f
g
(
α
)
)
′
=
−
1
=
a