Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=( ln (x2+ex)/ ln (x4+e2 x)), then value of undersetx arrow ∞ textLim((1/f(x)))f(x) is equal to
Q. Let
f
(
x
)
=
l
n
(
x
4
+
e
2
x
)
l
n
(
x
2
+
e
x
)
, then value of
x
→
∞
Lim
(
f
(
x
)
1
)
f
(
x
)
is equal to
487
178
Limits and Derivatives
Report Error
Answer:
1.414
Solution:
x
→
∞
Lim
f
(
x
)
=
x
→
∞
Lim
2
x
+
l
n
(
e
−
x
x
4
+
1
)
x
+
l
n
(
e
−
x
x
2
+
1
)
=
2
1
∵
x
→
∞
Lim
e
−
x
x
4
=
x
→
∞
Lim
e
x
x
4
=
0
∴
=
2
2
1
=
2