Suppose g(x)=∫x2(x+1)3f(x)dx.....(1) [12th &13th 7−01−2007] =∫(xA+x2B+x+1C+(x+1)2D+(x+1)3E)dx=Alnx−xB+Cln(1+x)−1+xD−2(x+1)2E
since g(x) is a rational function hence logarithmic functions must not be there ⇒A=C=0 g(x)=∫(x2B+(x+1)2D+(x+1)3E)dx.....(2)
comparing Nr of (1) and (2) f(x)=B(x+1)3+Dx2(x+1)+Ex2 f(x)=(B+D)x3+(3B+D+E)x2+3Bx+B ∴f(x) is quadratic function, hence B+D=0 also f(0)=1 gives B=1⇒D=−1 ∴f(x)=(2+E)x2+3x+1 f′(x)=2(2+E)x+3 f′(0)=3