Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) is a differentiable function such that f(x + y)=f(x)+f(y)+2xy∀ x,y∈ R and undersetx arrow 0lim(f (x)/x)=210 , then f(2) is equal to
Q. Let
f
(
x
)
is a differentiable function such that
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
+
2
x
y
∀
x
,
y
∈
R
and
x
→
0
l
im
x
f
(
x
)
=
210
, then
f
(
2
)
is equal to
215
185
NTA Abhyas
NTA Abhyas 2022
Report Error
A
20
B
105
C
424
D
none of these
Solution:
f
′
(
x
)
=
h
→
0
l
im
h
f
(
x
+
h
)
−
f
(
x
)
=
h
→
0
l
im
h
f
(
x
)
+
f
(
h
)
+
2
x
h
−
f
(
x
)
f
′
(
x
)
=
h
→
0
l
im
(
h
f
(
h
)
+
2
x
)
=
210
+
2
x
f
(
x
)
=
210
x
+
x
2
+
C
f
(
0
)
=
0
⇒
C
=
0
f
(
x
)
=
210
x
+
x
2
∴
f
(
2
)
=
424