Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=∫ (√x/(1+x)2) d x(x ≥ 0) . Then f(3)-f(1) is equal to :
Q. Let
f
(
x
)
=
∫
(
1
+
x
)
2
x
d
x
(
x
≥
0
)
.
Then
f
(
3
)
−
f
(
1
)
is equal to :
5069
196
JEE Main
JEE Main 2020
Integrals
Report Error
A
−
6
π
+
2
1
+
4
3
0%
B
6
π
+
2
1
−
4
3
0%
C
−
12
π
+
2
1
+
4
3
100%
D
12
π
+
2
1
−
4
3
0%
Solution:
f
(
x
)
=
1
∫
3
(
1
+
x
)
2
x
d
x
=
1
∫
3
(
1
+
t
2
)
2
t
⋅
2
t
d
t
(
put
x
=
t
)
=
(
−
1
+
t
2
t
)
1
3
+
(
tan
−
1
t
)
1
3
[Appling by parts]
=
−
(
4
3
−
2
1
)
+
3
π
−
4
π
=
2
1
−
4
3
+
12
π