Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f( x )=∫ limits3 x ( dt /√ t 4+3 t 2+13). If g ( x ) is the inverse of f( x ) then g prime(0) has the value equal to
Q. Let
f
(
x
)
=
3
∫
x
t
4
+
3
t
2
+
13
d
t
. If
g
(
x
)
is the inverse of
f
(
x
)
then
g
′
(
0
)
has the value equal to
323
90
Integrals
Report Error
A
11
1
B
11
C
13
D
13
1
Solution:
f
′
(
x
)
d
x
d
y
=
x
4
+
3
x
2
+
13
1
∴
g
′
(
y
)
=
d
y
/
d
x
1
=
x
4
+
3
x
2
+
13
when
y
=
f
(
x
)
when
y
=
0
then
x
=
3
hence
g
′
(
0
)
=
3
4
+
27
+
13
=
121
=
11
.