Given, f(x)=x0∫x3t(3t−4)dt−0∫x3t⋅t(3t−4)dt
For maxima /minima, we have f′(x)=0 ⇒0∫x3t(3t−4)dt+x⋅3x(3x−4)−3x⋅x(3x−4) ∴f′(x)=0∫x3t(3t−4)dt f′(x)=2ln31(32x−8⋅3x+7) f′(x)=2ln31(3x−1)(3x−7) f′(x)=0⇒x=0,log37 x=log37 is the point of minima. Hence, 3a=3log37=7