Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x)=∫0x(t-1)(t-2)2 dt. If f(x) ≥ k for all x and for some k, then the set of exhaustive values of k is
Q. Let
f
(
x
)
=
∫
0
x
(
t
−
1
)
(
t
−
2
)
2
d
t
. If
f
(
x
)
≥
k
for all
x
and for some
k
,
then the set of exhaustive values of
k
is
2326
203
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
(
0
,
∈
f
t
y
)
B
(
0
,
2
)
C
(
1
,
∈
f
t
y
)
D
(
−
∞
,
−
12
17
]
Solution:
x
=
1
is a point of global minima of
f
(
x
)
Minimum value of
f
(
x
)
=
∫
0
1
(
t
−
1
)
(
t
−
2
)
2
d
t
=
∫
0
1
(
t
3
−
5
t
2
+
8
t
−
4
)
d
t
=
12
−
17