Q.
Let f(x)=g(x).e1/x+e−1/xe1/x−e−1/x, where g is a continuous function then x→0limf(x) does not exist if
2940
195
Continuity and Differentiability
Report Error
Solution:
x→0+lime1/x+e−1/xe1/x−e−1/x=x→0+lim1+e−2/x1−e−2/x=1
and x→0−lime1/x+e−1/xe1/x−e−1/x=x→0−lime2/x+1e2/x−1=−1.
Hence x→0limf(x) exists if x→0limg(x)=0.
If g(x)=a=0 (constant) then x→0+limf(x)=a and x→0−limf(x)=−a.
Thus x→0limf(x) doesn’t exist in this case. ∴x→0limf(x) exists in case of (b), (c) and (d) each.