Q.
Let f(x),g(x) be two continuously differentiable functions satisfying the relationships f′(x)=g(x) and f′′(x)=−f(x). Let h(x)=[f(x)]2+[g(x)]2. If h(0)=5, then h(10)=
2600
195
Continuity and Differentiability
Report Error
Solution:
Since f’(x)=g(x),f′(x)=g′(x)
Put f′(x)=−f(x). Hence g′(x)=−f(x)
we have h′(x)=2f(x)f’(x)+2g(x)g′(x) =2[f(x)g(x)+g(x)[−f(x)]]=2[f(x)g(x)−f(x)g(x)]=0 ∴h(x)=C, a constant ∴h(0)=Ci.e.C=5 h(x)=5 for all x. Hence h(10)=5.