Q.
Let f(x),g(x) be two continuously differentiable functions satisfying the relationships f′(x)=g(x) and f′′(x)=−f(x) . Let h(x)=f(x)2+g(x)2 . If h(0)=5 . then find value of h(10) .
Given that h(x)=(f(x))2+(g(x))2
Differentiate on both sides with respect to x on both sides h′(x)=2f(x)f′(x)+2g(x)g′(x) =−2f(x)f′′(x)+2f(x)f′′(x) (∴g(x)=f′(x),g′(x)=f′′(x)) h′(x)=0 h(x)= constant ⇒h(0)=5 h(10)=5 .