∵g(x)=0∫xf(t)dt ⇒g′(x)=f(x)=⎩⎨⎧ex,2−ex−1,x−e,0≤x≤11<x≤22<x≤3 ∴g′(x)=0⇒ex−1=2 or x−e=0 ⇒x−1=log2 or x=e ⇒x=1+ln2 or e g"(x)=⎩⎨⎧ex,−ex−1,1,0≤x≤11<x≤22<x≤3
NOTE THIS STEP ∴g"(1+ln2)=−2 and g"(e)=1⇒g(x) has local max.
at x=1+ln2 and local min . at x = e.
Also graph of g(x) suggests, g (x) has local max. at x = 1 and local min. at x = 2