Q.
Let f(x)=tanx−xetanx−ex+ln(secx+tanx)−x be a continuous function at x=0. The value of f(0) equals
573
96
Continuity and Differentiability
Report Error
Solution:
For continuity of f at x=0, we have k=f(0)=x→0Limf(x)=<br/>x→0Limtanx−xetanx−ex+x→0Lim(x3tanx−x)x3ln(secx+tanx)−x =x→0Limtanx−xex(etanx−x−1)+3x→0Limx3ln(secx−tanx)−x=1+3x→0Lim3x2secx−1 (Using L.H. Rule) =1+21=23