2365
185
Continuity and Differentiability
Report Error
Solution:
For ∣x∣<1,x2n→0 as n→∞, and for ∣x∣>1,1/x2n→0 as n→∞ So, f(x)=⎩⎨⎧log(2+x),n→∞limx−2n+1x−2nlog(2+x)−sinx=−sinx,21[log(2+x)−sinx],∣x∣<1∣x∣>1∣x∣=1
Thus, x→1+limf(x)=x→1lim(−sinx)=−sin1
and x→1−limf(x)=x→1limlog(2+x)=log3