Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f (x)= displaystyle ∫0x sin2 ((t/2)) dt . Then the value of displaystyle limx → 0 (f (π+x)-f (π)/x) is equal to
Q. Let
f
(
x
)
=
∫
0
x
sin
2
(
2
t
)
d
t
.
Then the value of
x
→
0
lim
x
f
(
π
+
x
)
−
f
(
π
)
is equal to
2037
222
KEAM
KEAM 2014
Integrals
Report Error
A
4
1
B
2
1
C
4
3
D
1
E
0
Solution:
Given,
f
(
x
)
=
1
∫
x
sin
2
(
2
t
)
d
t
On differentiating both sides, we get
f
′
(
x
)
=
sin
2
(
2
x
)
[
d
x
d
(
x
)
−
d
x
d
(
1
)
]
(by Leibnitz's rule)
⇒
f
′
(
x
)
=
sin
2
2
x
∴
x
→
0
lim
x
f
(
π
+
x
)
−
f
(
π
)
=
f
′
(
π
)
=
sin
2
2
π
=
1