f(x)=∫0xg(t)dt f(−x)=∫0−xg(t)dt
put t=−u =−∫0xg(−u)du =−∫0xg(u)d(u)=−f(x) ⇒f(−x)=−f(x) ⇒f(x) is an odd function
Also f(5+x)=g(x) f(5−x)=g(−x)=g(x)=f(5+x) ⇒f(5−x)=f(5+x)
Now I=∫0xf(t)dt t=u+5 I=∫−5x−5f(u+5)du =∫−5x−5g(u)du =∫−5x−5f′(u)du =f(x−5)−f(−5) =−f(5−x)+f(5) =f(5)−f(5+x) =∫5+x5f′(t)dt=∫5+x5g(t)dt