We have, f(x)=cos5x+Acos4x+Bcos3x+Ccos2x+Dcosx+E
We know that, cosx=cos(2π−x) ∴f(x)=f(2π−x) [∵f(x) contains only cosines terms] ∵f(5π)=f(2π−5π)=f(59π)
Similarly , f(52π)=f(58π),f(53π)=f(57π) f(54π)=f(56π)
Let T=f(0)−f(5π)+f(52π)−f(53π)+…f(59π) T=f(0)−2[f(5π)+f(53π)] +2[f(52π)+f(54π)]−f(π)
Now, f(0)=1+A+B+C+D+E f(π)=−1+A−B+C−D+E ∵f(0)−f(π)=2(1+B+D) f(5π)+f(53π) =2(1+Bcos53π+Dcos5π) f(52π)+f(54π) =2(1+Bcos56π+Dcos52π)
Clearly, T contains only B and D terms