Q.
Let f(x)=cos(2x+3π)+sin(23x−4π). Which of the following statement(s) is/are CORRECT?
105
132
Relations and Functions - Part 2
Report Error
Solution:
Obviously the period of f(x) is L.C.M. of π,34π which is 4π Ans. ⇒ (A) Now f(x)=0⇒cos(2x+3π)=sin(4π−23x)=cos(4π+23x)⇒2x+3π=2nπ±(4π+23x)
With positive sign, 2x+3π=2nπ+4π+23x⇒2x=2nπ−12π⇒x=4nπ−6π,n=0,±1,±2,….
For n=0,x=6−π is the only value in [−π,π]
[Online test-2, P-2]
For n=1, no solution
Now with negative sign, 2x+3π=2nπ−4π−23x⇒27x=2nπ−4π−3π ⇒27x=2nπ−127π⇒x=74nπ−6π
For n=0,x=6−π; For n=1,x=74π−6π=4217π
For n=2,x=78π−6π=4241π; For n=−1,x=7−4π−6π=42−31π
Solution set is {6−π,1217π,4241π,42−31π} i.e. 4 Ans. ⇒(B)
Now f(x)=2⇒cos(2x+3π)+sin(23x−4π)=2
This is possible only if cos(2x+3π)=1 and sin(23x−4π)=1 ⇒2x+3π=2nπ,n∈I⇒x=nπ−6π....(1)
Now sin(23x−4π)=1⇒23x−4π=2nπ+2π⇒23x=2nπ+43π⇒x=34nπ+2π...(2)
Clearly x=611π satisfies both the equations (1) and (2). ⇒ (C)