Q.
Let f(x)=cos−1(1+x22x) and g(x)=sin−1(1+x21−x2), then derivative of f(x) with respect to g(x) at x=21 is equal to
163
114
Continuity and Differentiability
Report Error
Solution:
Given, f(x)=cos−1(1+x22x)=2π−sin−1(1+x22x)=2π−2tan−1x,−1≤x≤1 ∴f′(x)]k=21=1+x2−2=1+41−2=5−8
Also, g(x)=sin−1(1+x21−x2)=2π−cos−1(1+x21−x2)=2π−2tan−1x,x≥0 ∴g′(x)]x=21=1+x2−2=1+41−2=5−8
So, derivative of f(x) with respect to g(x) at x=21⇒g′(21)f′(21)=1