Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be a polynomial satisfying undersetx arrow ∞ textLim(x2 f(x)/2 x5+3)=6, also f(1)=3, f(3)=7 and f(5)=11, then find the value of ((f(6)+5 f(4)/29)).
Q. Let
f
(
x
)
be a polynomial satisfying
x
→
∞
Lim
2
x
5
+
3
x
2
f
(
x
)
=
6
, also
f
(
1
)
=
3
,
f
(
3
)
=
7
and
f
(
5
)
=
11
, then find the value of
(
29
f
(
6
)
+
5
f
(
4
)
)
.
350
153
Limits and Derivatives
Report Error
Answer:
2
Solution:
f
(
x
)
must be polynomial of degree '
3
'
f
(
x
)
=
λ
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
+
(
2
x
+
1
)
x
→
∞
Lim
2
x
5
+
3
x
2
(
λ
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
+
2
x
+
1
)
=
6
2
λ
=
6
⇒
λ
=
12
Hence,
f
(
x
)
=
12
(
x
−
1
)
(
x
−
3
)
(
x
−
5
)
+
(
2
x
+
1
)
f
(
6
)
=
193
f
(
4
)
=
−
27
(
29
f
(
6
)
+
5
f
(
4
)
)
=
2