Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be a polynomial function of second degree. If f(1)=f(-1) and a, b, c are in A.P., then f prime(a), f prime(b) and f prime(c) are in
Q. Let
f
(
x
)
be a polynomial function of second degree. If
f
(
1
)
=
f
(
−
1
)
and
a
,
b
,
c
are in A.P., then
f
′
(
a
)
,
f
′
(
b
)
and
f
′
(
c
)
are in
658
181
Sequences and Series
Report Error
A
A.P.
B
G.P.
C
H.P.
D
arithmetico-geometric progression
Solution:
Let
f
(
x
)
=
A
x
2
+
B
x
+
C
∴
f
(
1
)
=
A
+
B
+
C
and
f
(
−
1
)
=
A
−
B
+
C
∵
f
(
1
)
=
f
(
−
1
)
⇒
A
+
B
+
C
=
A
−
B
+
C
⇒
B
=
0
∴
f
(
x
)
=
A
x
2
+
C
⇒
f
′
(
x
)
=
2
A
x
⇒
f
′
(
a
)
=
2
A
a
,
f
′
(
b
)
=
2
A
b
and
f
′
(
c
)
=
2
A
c
Also,
a
,
b
,
c
are in A.P. .
∴
2
A
a
,
2
A
b
,
2
A
c
are in A.P.
⇒
f
′
(
a
)
,
f
′
(
b
)
,
f
′
(
c
)
are in A.P.