Q.
Let f(x) be a non-constant twice differentiable function on R such that f(2+x)=f(2−x) and f′(21)=f′(1)=0. Then minimum number of roots of the equation f′′(x)=0 in (0,4) are
f(2+x)=f(2−x) f′(2+x)=−f′(2−x)
Put x=0,f′(2)=0 x=−1f′(1)=−f′(3)=0 x=2−3,f′(21)=−f′(27)=0 ∴f′(21)=0=f′(1)=f′(2)=f′(3)=f′(27)
Using Rolle's theorem in y=f′(x).
Minimum number of roots of f′′(x)=0 are 4 .