Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be a non-constant differentiable function satisfying f(x)=x2-∫ limits01(f(t)+x)2 d t. Then which of the following is/are correct?
Q. Let
f
(
x
)
be a non-constant differentiable function satisfying
f
(
x
)
=
x
2
−
0
∫
1
(
f
(
t
)
+
x
)
2
d
t
. Then which of the following is/are correct?
204
119
Application of Integrals
Report Error
A
f
(
x
)
is monotonic.
B
x
→
3
4
Lim
(
f
(
x
)
)
cosec
(
3
π
x
)
is equal to
e
π
1
.
C
Derivative of
f
(
x
)
w.r.t
ln
x
at
x
=
1
is equal to 3 .
D
Area bounded by
f
(
x
)
and co-ordinate axes is
3
2
.
Solution:
f
(
x
)
=
x
2
−
0
∫
1
f
2
(
t
)
d
t
−
2
x
0
∫
1
f
(
t
)
d
t
−
x
2
0
∫
1
d
t
f
(
x
)
=
x
2
+
A
+
2
B
x
−
x
2
=
A
+
2
B
x
A
=
−
0
∫
1
f
2
(
t
)
d
t
=
−
0
∫
1
(
A
+
2
Bt
)
2
d
t
B
=
−
0
∫
1
f
(
t
)
d
t
=
−
0
∫
1
(
A
+
2
Bt
)
d
t
∴
f
(
x
)
=
3
x
−
3
Now verify all the option.