Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)$ be a non-constant differentiable function satisfying $f(x)=x^2-\int\limits_0^1(f(t)+x)^2 d t$. Then which of the following is/are correct?

Application of Integrals

Solution:

$f(x)=x^2-\int\limits_0^1 f^2(t) d t-2 x \int\limits_0^1 f(t) d t-x^2 \int\limits_0^1 d t$
$f(x)=x^2+A+2 B x-x^2=A+2 B x $
$A=-\int\limits_0^1 f^2(t) d t=-\int\limits_0^1(A+2 B t)^2 d t $
$B=-\int\limits_0^1 f(t) d t=-\int\limits_0^1(A+2 B t) d t $
$\therefore f(x)=3 x-3$
Now verify all the option.