Q.
Let f(x) be a function defined by f(x)=1∫xt(t2−3t+2)dt,1≤x≤3, then the range of f(x) is
2440
195
Relations and Functions - Part 2
Report Error
Solution:
Given, f(x)=1∫xt(t2−3t+2)dt ⇒f′(x)=x(x2−3x+2)=x(x−1)(x−2)
(using leibnitz rule of derivative)
Now, f′(x)≤0 in 1≤x≤2 f′(x)≥0 in 2≤x≤3 ∴f(x) decreases in [1,2] and increases in [2,3] ∴ min (f(x))=f(2)=1∫2x(x2−3x+2)dx =(4x2−x3+x2)12=−41
and max (f(x))= the greatest among f(1),f(3) ∴f(1)=1∫1x(x2−3x+2)dx=0 f(3)=1∫3x(x2−3x+2)dx=2 ∴ max f(x)=2 ∴ range of f(x)=[−41,2]