Θf(yx)=f(y)f(x)
Differentiating w.r.t. y keeping x constant f′(yx)⋅(y2−x)=f2(y)−f(x)⋅f′(y)
Putting y=1 xf′(x)=(f(1))2f(x)⋅f′(1)
Putting x=y=1 in given relation, we get f(1)=1 ∴f(x)f′(x)=x2⇒lnf(x)=2lnx+c Putting x=1,c=0 ∴f(x)=x2
Putting x=1,c=0 ∴f(x)=x2 Area bounded =0∫2(2x−x2)dx=(ln22x−3x3)02 =ln24−38−ln21=3ln29−8ln2
Clearly, L.H.L. =x→0−Lim[xf(x)]=−1
and R.H.L. =x→0−Lim[xf(x)]=0 ∴ Limit does not exist.