Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be a differentiable function defined on [0,2] such that f prime(x)=f prime(2-x) for all x ∈(0,2) f(0)=1 and f(2)=e2. Then the value of ∫02 f(x) d x is :
Q. Let
f
(
x
)
be a differentiable function defined on
[
0
,
2
]
such that
f
′
(
x
)
=
f
′
(
2
−
x
)
for all
x
∈
(
0
,
2
)
f
(
0
)
=
1
and
f
(
2
)
=
e
2
. Then the value of
∫
0
2
f
(
x
)
d
x
is :
4937
197
JEE Main
JEE Main 2021
Integrals
Report Error
A
1
−
e
2
B
1
+
e
2
C
2
(
1
−
e
2
)
D
2
(
1
+
e
2
)
Solution:
f
′
(
x
)
=
f
′
(
2
−
x
)
f
(
x
)
=
−
f
(
2
−
x
)
+
c
put
x
=
0
f
′
(
0
)
=
−
f
′
(
2
)
+
c
c
=
f
(
0
)
+
f
(
2
)
=
1
+
e
2
so,
f
(
x
)
+
f
(
2
−
x
)
=
1
+
e
2
I
=
∫
0
2
f
(
x
)
d
x
I
=
∫
0
2
f
(
2
−
x
)
d
x
2
I
=
∫
0
2
(
f
(
x
)
+
f
(
2
−
x
))
d
x
2
I
=
(
1
+
e
2
)
∫
0
2
d
x
I
=
1
+
e
2