Θ(f(x))3=x21×3(0∫xf(t)dt)2⋅f(x)−x32(0∫xf(t)dt)3 ⇒(g′(x))3=x23g′(x)⋅(g(x))2−x32g3(x) ⇒(g(x)xg′(x))3=3(g(x)xg′(x))−2
Let g(x)xg′(x)=t ∴t3−3t+2=0⇒(t−1)(t2+t−2)=0 ⇒(t−1)(t+2)(t−1)=0 ∴g(x)xg(x)=1 or −2
(i) if g(x)x′(x)=1⇒xf(x)=0∫xf(t)dt ⇒f(x)+xf′(x)=f(x)⇒f′(x)=0 ⇒f(x)=C,C= constant (ii) If x(1)=1g(x)xg′(x)=−2⇒xf(x)=−2∫0xf(t)dt ⇒f(x)+xf′(x)=−2f(x) ⇒f(x)f′(x)=−x3⇒lnf(x)=−3lnx+lnK ⇒f(x)=x3K Θf(1)=1 ∴K=1 ∴f(x)=x31 f′(x)=−x43<0 ∴f(x)=x31 is decreasing but f(x) is non-decreasing ∴g(x)xg(x)=1