Q. Let $f ( x )$ be a derivable non-decreasing function such that $\int\limits_0^{ x }( f ( t ))^3 dt =\frac{1}{ x ^2}\left(\int\limits_0^{ x } f ( t ) dt \right)^3 \forall x \in R -\{0\}$ and $f (1)=1$ If $\int\limits_0^x f(t) d t=g(x)$ then $\frac{x g^{\prime}(x)}{g(x)}$ is
Differential Equations
Solution: