Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) be a continuous function in R such that f(x) + f(y) = f(x + y). If ∫ 03 f(x)dx=K, then ∫-33f(x) dx is equal to
Q. Let
f
(
x
)
be a continuous function in R such that
f
(
x
)
+
f
(
y
)
=
f
(
x
+
y
)
. If
∫
0
3
f
(
x
)
d
x
=
K, then
∫
−
3
3
f
(
x
)
d
x
is equal to
1952
243
Integrals
Report Error
A
2 K
50%
B
0
33%
C
2
K
17%
D
-2K
0%
Solution:
Since
f
(
x
)
+
f
(
y
)
=
f
(
x
+
y
)
...
(
1
)
∴
f
(
x
)
+
f
(
−
x
)
=
f
(
0
)
…
(
2
)
[By putting
y
=
−
x
in
(
1
)]
Again
f
(
0
)
+
f
(
0
)
=
f
(
0
)
[By putting
x
=
y
=
0
in
(
1
)
]
⇒
f
(
0
)
=
0
∴
(
2
)
gives
f
(
x
)
+
f
(
−
x
)
=
0
∴
f
(
−
x
)
=
−
f
(
x
)
∴
f
(
x
)
is an odd function.
∴
−
3
∫
3
f
(
x
)
d
x
=
0