Consider ϕ(x)=f(x)−g(x)⇒ϕ′(x)=f′(x)−g′(x)>0 ϕ(x) is also continuous and derivable in [x0,x] using LMVT for ϕ(x) in [x0,x] ϕ′(x)=x−x0ϕ(x)−ϕ(x0). since ϕ′(x)=f′(x)−g′(x) are f′(x)−g′(x)>0 for all x>x0 ∴ϕ′(x)>0 hence ϕ(x)−ϕ(x0)>0 ϕ(x)>ϕ(x0) (ϕ(x0)=f(x0)−g(x0)=0) f(x)−g(x)>0⇒ (D)