Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let f(x) and g(x) are two continuous functions from R arrow R such that f(x1)>f(x2) and g(x1)<g(x2) for all x1>x2 and if f(g(α2-2 α))>f(g(3 α-4)), then the complete set of values of α is
Q. Let
f
(
x
)
and
g
(
x
)
are two continuous functions from
R
→
R
such that
f
(
x
1
)
>
f
(
x
2
)
and
g
(
x
1
)
<
g
(
x
2
)
for all
x
1
>
x
2
and if
f
(
g
(
α
2
−
2
α
)
)
>
f
(
g
(
3
α
−
4
))
, then the complete set of values of
α
is
81
141
NTA Abhyas
NTA Abhyas 2022
Report Error
A
(
1
,
4
)
B
(
4
,
10
)
C
(
−
4
,
10
)
D
(
−
1
,
4
)
Solution:
Here
f
(
g
(
α
2
−
2
α
)
)
>
f
(
g
(
3
α
−
4
))
⇒
g
(
α
2
−
2
α
)
>
g
(
3
α
−
4
)
(
∵
f
is increasing
)
⇒
α
2
−
2
α
<
3
α
−
4
(
∵
g
is decreasing)
⇒
α
2
−
5
α
+
4
<
0
⇒
(
α
−
1
)
(
α
−
4
)
<
0
⇒
α
∈
(
1
,
4
)