Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $f(x)$ and $g(x)$ are two continuous functions from $R \rightarrow R$ such that $f\left(x_{1}\right)>f\left(x_{2}\right)$ and $g\left(x_{1}\right)x_{2}$ and if $f\left(g\left(\alpha^{2}-2 \alpha\right)\right)>f(g(3 \alpha-4))$, then the complete set of values of $\alpha$ is

NTA AbhyasNTA Abhyas 2022

Solution:

Here $f\left(g\left(\alpha^{2}-2 \alpha\right)\right)>f(g(3 \alpha-4))$
$ \Rightarrow g\left(\alpha^{2}-2 \alpha\right)>g(3 \alpha-4)(\because f \text { is increasing }) $
$\Rightarrow \alpha ^{2}-2\alpha < 3\alpha -4$ ( $\because $ $g$ is decreasing)
$\Rightarrow \alpha ^{2}-5\alpha +4 < 0$
$\Rightarrow \left(\alpha - 1\right)\left(\alpha - 4\right) < 0$
$\Rightarrow \alpha \in \left(1 , 4\right)$